[ad_1]
Besides captivating gameplay, Housemarque is known for over the top particle effects. Titles such as Resogun, Alienation, Matterfall and Nex Machina all used proprietary VFX technology to bring colorful explosions to the screen in order to reward players for destroying enemies or completing levels. In Returnal, Housemarque switched from top down to a third person camera, but also to a more grounded and darker art style than before. In this article, Risto Jankkila, Lead VFX Artist, and Sharman Jagadeesan, Senior Graphics Programmer, give us a closer look at how they utilized their VFX tech to make the alien planet of Atropos and its inhabitants come to life.
Below you can find the full breakdown video covering some of the showcase VFX features of Returnal. In addition to that, we’ll go a bit more into detail with some of those features in this article.
The history of our VFX tech
We have been working on our proprietary VFX tech since Resogun (2013 PS4 launch title), where the first prototype of our current particle system was used on some of the showcase effects. After Resogun, the particle system got a graphical user interface and we started referring to it as Next Gen Particle System (NGP). In 2014 we made the decision to produce all of the particle effects for Alienation with NGP. After shipping Alienation, the system was used for Nex Machina and ported to Unreal Engine for Matterfall.
NGP is designed to be a GPU-only VFX authoring system with minimal CPU overhead. Focus is on good performance and flexibility. Particle authoring is done by VFX artists who write compute shader snippets that define particle behaviour and data. NGP takes care of memory allocation and most of the boilerplate code, while artists can focus on behaviour and visuals.
Currently NGP is not intended to handle only particle effects. It can also be used for controlling voxel behaviour in volumes or for generating dynamic procedural geometry. We also have several modules that generate data to be used as an input for effects.
For example, we have our own fluid simulation module that can feed its simulation data to NGP. Another example is a module called voxeliser which can convert an animated mesh to voxels. That data can be then used for volumetric character effects. Other resources like textures, bone matrices and vertex buffers can also be used as inputs for particle effects.
The VFX magic behind enemy tentacles and bullet trails: node particles
From early on in Returnal’s development, it was clear that we wanted to do something special with enemy creatures on Atropos. Game director Harry Krueger wanted them to resemble deep-sea creatures with properties like bioluminescence and tentacles.
Our enemy team animators briefly experimented doing tentacles using traditional rigid body physics to simulate chains of bones attached to enemy skeletons. This approach seemed a little too limited since the performance cost of doing multiple very long chains was too high, but also because we lacked means of expressing enemy states via physics simulations only. VFX was then assigned the task to create dynamic tentacles that could be attached to enemy meshes and skeletons.
[ad_2]